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SELF-SIMILAR SOLUTION OF THE ONE-DIMENSIONAL PROBLEM

OF THERMOCAPILLARY MOTION OF AN EMULSION

UDC 517.946A. G. Petrova

It is proved that the problem of one-dimensional motion of an emulsion under the action of thermo-
capillary forces has a self-similar solution in a semi-infinite interval. The behavior of the solution
is illustrated by numerical examples for aluminum–lead emulsions, in which the carrier phase is lead
or aluminum. The solution is compared with the solution of the self-similar problem linearized in the
low impurity concentration.
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1. Formulation of the Problem. In 1995, Voinov and Pukhnachev formulated a model for the motion
of an emulsion in a field of microaccelerations and thermocapillary forces [1]. This model (the stability of simple
solutions, the problem of emulsion solidification in linearized formulations, simple discontinuous solutions) has been
the subject of a number of studies; a review of the main results is given in [2]. However, even in the one-dimensional
case, the model is very complex and insufficiently studied. It is of interest to find and study nontrivial exact
solutions of the complete problem, in particular, the self-similar solution with the variable ξ = x/

√
t. We note that

a self-similar solution of the linearized problem of emulsion solidification is considered in [3].
The constitutive equations of the Voinov–Pukhnachev model [1] are written as

∂c

∂t
+ div (cu) = 0,

∂(1 − c)
∂t

+ div ((1 − c)v) = 0,

ρdc
(∂u

∂t
+ u · ∇u

)
+ ρm(1 − c)

(∂v

∂t
+ v · ∇v

)

= −∇p+ div (μm(1 + cN)(∇v + (∇v)∗)) + ρdcg + ρm(1 − c)g,

ρdλdc
(∂T
∂t

+ u · ∇T
)

+ ρmλm(1 − c)
(∂T
∂t

+ v · ∇T
)

= div (k(c)∇T );

u − v = Kg + L∇T. (1.1)

Here c� 1 is the dispersed-phase concentration, T is the total temperature, u and v are the averaged velocities of
the dispersed and carrier phases, respectively, p is the pressure, ρ is the density, μ is the dynamic viscosity, λ is the
specific heat, k is the thermal conductivity, and

N =
μm + 5μd/2
μm + μd

, K =
2R2(ρd − ρm)(μm + μd)

3μm(2μm + 3μd)
, L =

2RkmσT

(2μm + 3μd)(2km + kd)
,
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where R is the radius of spherical inclusions and σT is the derivative (with the inverse sign) of the surface tension
with respect to temperature; the subscripts d and m denote the parameters of the dispersed and carrier phases,
respectively.

The thermal conductivity of the mixture was determined using a linear approximation (with respect to
small values of c) of the Maxwell formula. Since the model of [1] was constructed under the assumption of a low
concentration of the dispersed phase, the use of the linear approximation is reasonable and justified. In the case
considered, it is more convenient to use nonlinear thermal conductivity k(c). Its value is bounded from below and
from above: min (kd, km) and max (kd, km). Let max |k′(c)| ≤ P . For simplicity in obtaining estimates, we assume
that P/min (kd, km) ≤ 5 although the Maxwell formula yields a more accurate estimate.

In the case of one-dimensional motion with plane waves, the problem reduces to the system of two equa-
tions [2]

∂c

∂t
+

∂

∂x

{[
c
(
Kg + L

∂T

∂x

)
− f

]
(1 − c)

}
= 0,

[
ρdλdc+ ρmλm(1 − c)

](∂T
∂t

+ f
∂T

∂x

)
+ (ρdλd − ρmλm)c(1 − c)

(
Kg + L

∂T

∂x

)∂T
∂x

= km
∂

∂x

(
(1 −Mc)

∂T

∂x

)
,

where g = |g| and f = f(t) = cu+(1− c)v is the volume averaged velocity of motion of the emulsion. To determine
it, one needs to specify an additional boundary condition, for example, f = 0, for the case where the flow has a
plane of symmetry or an impenetrable wall.

If Kg = 0 and f(t) = γ/
√
t, the one-dimensional problem admits the self-similar formulation

− ξ
2
dc

dξ
+

(
(1 − 2c)L

dT

dξ
− γ

)dc
dξ

+ c(1 − c)L
d2T

dξ2
= 0,

(
− ξ

2
− γ

)
(ρdλdc+ ρmλm(1 − c))

dT

dξ
+ c(1 − c)(ρdλd − ρmλm)

(
L
dT

dξ

)2

=
d

dξ

(
k(c)

dT

dξ

)
,

(1.2)

where ξ = x/
√
t, c = c(ξ), and T = T (ξ).

The most natural boundary-value problem for system (1.2) arises for the case γ = 0 under the boundary
conditions

c(∞) = c∞, T (0) = T0, T (∞) = T∞, T0 > T∞ (1.3)

and corresponds to a sudden temperature rise on the left boundary. The less natural but simpler boundary-value
problem

c(0) = c0, LTξ(0) = θ0 (1.4)

corresponds to the specification of a constant concentration different from the initial one and a temperature gradient
of special form one the left boundary. We introduce the following notation: θ(ξ) = LdT/dξ. This quantity will be
called the self-similar relative velocity [see (1.1)]. Everywhere below, γ = 0. System (1.2) can be written as

− ξ
2
dc

dξ
+ ((1 − 2c)θ)

dc

dξ
+ c(1 − c)

dθ

dξ
= 0,

− ξ
2

(ρdλdc+ ρmλm(1 − c))θ + c(1 − c)(ρdλd − ρmλm)θ2 =
d

dξ
(k(c)θ).

(1.5)

We linearize system (1.2) with respect to the low concentration, as was done in [3] for the problem of impurity
solidification. As a result, the system breaks up, and the concentration is found from the equation

− ξ
2
dc

dξ
+
dc

dξ

dT

dξ
+ c

d2T

dξ2
= 0, (1.6)

where T (ξ) is a solution of the equation

− ξ
2
ρmλm

dT

dξ
=

d

dξ

(
km

dT

dξ

)
. (1.7)
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The solution of problem (1.6), (1.7), (1.4) is written as

T (ξ) = T0 + θ0

ξ∫

0

exp
(
− ξ2ρmλm

4km

)
dξ,

c(ξ) = c0 exp
(
− θ0

ξ∫

0

ξρmλm exp (−ξ2ρmλm/(4km))
ξkm − 2kmθ0 exp(−ξ2ρmλm/(4km))

dξ
)
,

(1.8)

where

θ0 = (T∞ − T0)
/ ∞∫

0

exp (−ξ2ρmλm/(4km)) dξ,

c0 = c∞ exp
(
θ0

∞∫

0

ξρmλm exp (−ξ2ρmλm/(4km))
ξkm − 2kmθ0 exp (−ξ2ρmλm/(4km))

dξ
)
.

(1.9)

Unlike in the linearized problem, the existence of the solution of the complete self-similar problem (1.2),
(1.3) is not obvious. Before proving the solvability of this problem, we consider the simpler auxiliary problem (1.5),
(1.4).

2. Auxiliary Boundary-Value Problem. Solving system (1.5) with respect to the derivatives, we obtain
the equations

dθ

dξ
= θ

( ξ
2
− (1 − 2c)θ

)−ξ(ρdλdc+ ρmλm(1 − c))/2 + c(1 − c)(ρdλd − ρmλm)θ
ξk(c)/2 − (k(c)(1 − 2c) − k′(c)c(1 − c))θ

,

dc

dξ
= c(1 − c)θ

−ξ(ρdλdc+ ρmλm(1 − c))/2 + c(1 − c)(ρdλd − ρmλm)Lθ
ξk(c)/2 − (k(c)(1 − 2c) − k′(c)c(1 − c))θ

.

(2.1)

We introduce the functions

ψ(ξ, c, θ) =
ξ/2 − (1 − 2c)θ

ξk(c)/2 − (k(c)(1 − 2c) − k′(c)c(1 − c))θ
; (2.2)

ϕ(ξ, c, θ) =
−ξ(ρdλdc+ ρmλm(1 − c))/2 + c(1 − c)(ρdλd − ρmλm)θ

ξk(c)/2 − (k(c)(1 − 2c) − k′(c)c(1 − c))θ
(2.3)

and write system (2.1) as

dθ

dξ
= − ξ

2
(ρdλdc+ ρmλm(1 − c))θψ + c(1 − c)(ρdλd − ρmλm)θ2ψ(ξ, c, θ),

dc

dξ
= c(1 − c)θϕ(ξ, c, θ).

(2.4)

For system (2.4) in the interval [0,∞), we consider the boundary-value problem (1.4), which becomes

c(0) = c0, θ(0) = θ0. (2.5)

We seek the classical solution of problem (2.4), (2.5) in the interval [0,∞);

c ∈ [0, c∗], (2.6)

where c∗ � 0.1 is a positive number. It should be noted that constraint (2.6) does not complicate the problem since
the examined model is constructed under the low concentration assumption.

The following result follows from the classical theorems for ordinary differential equations.
Lemma 2.1. Problem (2.4), (2.5) with boundary conditions satisfying (2.6) has a unique solution which

depends continuously on the initial conditions and is bounded in the interval [0,∞).
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Lemma 2.2. For the solution of problem (2.4), (2.5) with boundary conditions satisfying (2.6), the following
representations

θ(ξ) =

θ0 exp
(
− 1

2

ξ∫

0

ψξ(ρdλdc+ ρmλm(1 − c)) dξ
)

1 − θ0

ξ∫

0

c(1 − c)(ρdλd − ρmλm)ψ exp
(
− 1

2

ξ∫

0

ψη(ρdλdc+ ρmλm(1 − c)) dη
)
dξ

; (2.7)

c(ξ)(1 − c(ξ)) = c0(1 − c0) exp
( ξ∫

0

(1 − 2c)θ(ξ)ϕ(ξ, c, θ) dξ
)

(2.8)

and inequalities

θ < 0, c > 0 (2.9)

are valid.
Formulas (2.7)–(2.9) follow directly from Eqs. (2.4) and boundary conditions (2.5). The remaining properties

of the solution c(ξ) and θ(ξ) depend greatly on the sign of the difference ρdλd − ρmλm. Formulas (2.3), (2.7),
and (2.8) imply that in the case ρdλd − ρmλm ≥ 0, the functions c(ξ) and θ(ξ) are monotonically increasing; if
ρdλd − ρmλm < 0, they have minima in the interval considered, which slightly complicates the proof.

3. Estimates of the Self-Similar Relative Velocity. The following statement is checked directly.
Lemma 3.1. If conditions (2.6) are satisfied, the function ψ given by formula (2.2), is a smooth function

of its arguments and satisfies the inequality

α ≤ ψ(ξ, c, θ) ≤ β, (3.1)

where

α =
0,64

max (kd, km)
, β =

4
min (kd, km)

at c ∈ [0, c∗], c∗ ≤ 0.1, and P/min (kd, km) ≤ 5.
Lemma 3.2. In the range of applicability of Lemma 3.1, the negative function θ, which is a solution of

problem (2.4), (2.5), satisfies the inequalities

|θ0| exp (−ξ2βρdλd/4)
/(

1 + |θ0|c∗β(ρdλd − ρmλm)

∞∫

0

exp (−ξ2ρmλmα/4) dξ
)

≤ |θ| ≤ |θ0| exp (−ξ2αρmλm/4) (3.2)

in the case ρdλd − ρmλm ≥ 0 and

|θ0| exp (−ξ2ρmλmβ/4) ≤ |θ| ≤ 2|θ0| exp (−ξ2ρdλdα/4) (3.3)

for

|θ0| < 1
/(

2β(ρmλm − ρdλd)c∗
∞∫

0

exp(−ξ2ρdλdα/4) dξ
)

(3.4)

in the case ρdλd − ρmλm < 0.
Lemma 3.2 is proved by using representation (2.7) for the function θ(ξ) and estimates (3.1) for the function ψ.
4. Estimates of Concentration. The following statement is checked directly.
Lemma 4.1. In the case ρdλd − ρmλm ≥ 0, the following relations are valid:

−a ≤ ϕ ≤ 0,

a = max
(ρmλd + (ρdλd − ρmλm)c∗

min (kd, km)
,
4c∗(ρdλd − ρmλm)

min (kd, km)

)
;

(4.1)
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in the case ρdλd − ρmλm < 0, the following relations are valid:

0 < ϕ(ξ) ≤ 4c∗(ρmλm − ρdλd)
min (kd, km)

at ξ ≤ ξ∗; (4.2)

− ρmλm

min (kd, km)
≤ ϕ(ξ) ≤ 0 at ξ > ξ∗; (4.3)

here ξ∗ is a root of the equation ϕ(ξ, c(ξ), θ(ξ)) = 0.
Lemma 4.1 is proved by using estimates (3.1) for the integral representations (2.7) and (2.8).
Lemma 4.2. For the function c(ξ) which is a solution of the auxiliary problem (2.4), (2.5), the following

estimates hold:
— in the case ρdλd − ρmλm ≥ 0,

c0(1 − c0) ≤ c(ξ)(1 − c(ξ)) ≤ c0(1 − c0) exp
(
|θ0|

ξ∫

0

a exp (−ξ2αρmλm/4) dξ
)
; (4.4)

— in the case ρdλd − ρmλm < 0,

c0(1 − c0) exp (−1) ≤ c(ξ)(1 − c(ξ)) ≤ c0(1 − c0) exp
( ρmλm

4(ρmλm − ρdλd)c∗
)
. (4.5)

Proof. To obtain a lower-bound estimate for the case of ρdλd − ρmλm ≥ 0, it is sufficient to notice that the
function c(ξ) does not decrease monotonically, and to obtain an upper estimate, one needs to use representation
(2.8), estimate (3.2) for the function θ, and estimate (4.1) for the function ϕ.

To obtain estimates for the case ρdλd − ρmλd < 0, we write representation (2.8) as

c(ξ)(1 − c(ξ)) = c0(1 − c0) exp
( ξ∗∫

0

(1 − 2c)θϕ(ξ, c, θ) dξ +

∞∫

ξ∗

(1 − 2c)θϕ(ξ, c, θ) dξ
)
, (4.6)

where ξ∗ is a root of the equation ϕ(ξ, c(ξ), θ(ξ)) = 0. Relation (4.6) implies the inequality

c(ξ)(1 − c(ξ)) ≥ c0(1 − c0) exp
( ξ∗∫

0

(1 − 2c)θ(ξ)ϕ(ξ, c, θ) dξ
)
,

which, together with estimates (3.3) and (4.2), leads to the lower estimate in (4.5). To obtain an upper estimate,
we discard the first (negative) term in the argument of the exponent in equality (4.6). As a result, we obtain the
inequality

c(ξ)(1 − c(ξ)) ≤ c0(1 − c0) exp
( ∞∫

ξ∗

(1 − 2c)θϕ(ξ, c, θ) dξ
)
.

Thus, in view of (3.3) and (4.3), inequality (4.5) and Lemma 4.2 are proved.
5. Existence of a Self-Similar Solution of the Primal Problem. We return to problem (1.2), (1.3)

in the case γ = 0. We integrate (2.7) in the interval from 0 to ∞ and substitute ξ = ∞ into formula (2.8). As a
result, we have the equations

T∞ − T0 =
1
L

∞∫

0

θ dξ ≡ −F (θ0, c0),

c∞(1 − c∞) = c0(1 − c0) exp
( ∞∫

0

(1 − 2c)θ(ξ)ϕ(ξ, c, θ) dη
)
≡ G(θ0, c0).
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Let us consider the case ρdλd − ρmλm ≥ 0. Estimates (3.2) imply the inequality

|θ0|
∞∫

0

exp(−ξ2βρdλd/4) dξ
/[

L
(
1 + |θ0|c∗β(ρdλd − ρmλm)

∞∫

0

exp (−ξ2ρmλmα/4) dξ
)]

≤ F (θ0, c0) ≤ |θ0|
L

∞∫

0

exp (−ξ2αρmλm/4) dξ,

from which, by virtue of the continuity of F and the conditions F (0, c0) = 0, it follows, that for any T0 and T∞
satisfying the conditions

0 < T0 − T∞ ≤
√
ρmλmα√

ρdλdβ Lβc∗(ρdλd − ρmλm)
, (5.1)

and for any c0 ∈ (0, c∗], there exists θ0 < 0 such that

T0 − T∞ = F (θ0, c0). (5.2)

We denote by θ0(c0) the smallest (in modulus) solution of Eq. (5.2).
Using estimate (4.4), we obtain

c0(1 − c0) ≤ G(θ0(c0), c0) ≤ c0(1 − c0) exp
(
|θ0(c0)|

∞∫

0

a exp (−ξ2αρmλm/4) dξ
)
.

Because the function G is continuous and vanishes for c0 = 0, it follows that for any c∞ satisfying the conditions

0 < c∞ ≤ c∗ (5.3)

there exists a value c0 ∈ (0, c∞) such that the equation

c∞(1 − c∞) = G(θ0(c0), c0) (5.4)

has a solution. Thus, the existence of a solution of system (2.1) for the initial data of the problem satisfying
conditions (5.1) and (5.3) is proved. The temperature distribution is found from the formula

T (ξ) =

ξ∫

0

θ dξ + T0. (5.5)

Hence, the following theorem is proved.
Theorem 1. Let ρdλd − ρmλm ≥ 0. Then, for any T0, T∞, and c0 satisfying conditions (5.1) and (5.3), the

following relations are valid:

0 < T0 − T∞ ≤
√
ρmλmα√

ρdλdβ Lβc∗(ρdλd − ρmλm)
, 0 < c∞ ≤ c∗;

here c∗ is any number in the interval (0, 0.1). In this case, problem (1.5) has a classical solution bounded over the
entire interval [0,∞).

Let us consider the case ρdλd − ρmλm < 0. Inequality (3.3) of Lemma 3.2 leads to the estimate

|θ0|
L

∞∫

0

exp (−ξ2βρmλm/4) dξ ≤ F (θ0, c0) ≤ 2|θ0|
L

∞∫

0

exp (−ξ2αρdλd/4) dξ.

In view of constraints (3.4) on the value of θ0 and the continuity condition for the function F (θ0, c0), it is concluded
that for any T0 and T∞ satisfying the conditions

0 < T0 − T∞ ≤ 1
Lβc∗(ρmλm − ρdλd)

, (5.6)

and for any c0 ∈ (0, c∗], there exists a value θ0 < 0 that is a solution of Eq. (5.2). As above, by θ0(c0) we denote
the smallest (in modulus) solution of Eq. (5.2).
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Estimate (4.5) of Lemma 4.2 leads to

c0(1 − c0) exp (−1) ≤ G(θ0(c0), c0) ≤ c0(1 − c0) exp
( ρmλm

4(ρmλm − ρdλd)
c∗

)
.

From this, we conclude that for any c∞ satisfying the conditions

0 < c∞(1 − c∞) ≤ c∗(1 − c∗) exp (−1), (5.7)

there exists a value c0 ∈ (0, c∞) such that Eq. (5.4) has a solution. The temperature is found from formula (5.5).
Thus, the following theorem is proved.

Theorem 2. Let ρdλd − ρmλm < 0. Then, for any T0, T∞, and c0 satisfying conditions (5.6) and (5.7), the
following relations are valid:

0 < T0 − T∞ ≤ 1
Lβc∗(ρmλm − ρdλd)

, 0 < c∞(1 − c∞) ≤ c∗(1 − c∗) exp (−1);

here c∗ is any number in the interval (0, 0.1). In this case, problem (1.5), (1.4) has the classical solution bounded
over the entire the range [0,∞).

Remark 1. In Theorems 1 and 2, the constraints imposed on the initial data can be refined but in the form
presented here they also do not complicate the problem and hold in most real cases, as follows from the examples
considered below. In the case ρdλd = ρmλm, there are no upper-bound constraints on the difference T0 − T∞.

6. Examples of Numerical Calculations. Since the numerical solution of the problem of motion of an
emulsion is a subject of separate research, we restrict ourselves to examples of numerical solution of the Cauchy
problem for the system of ordinary differential equations (of the auxiliary problem) obtained using the MathCad
software. We consider two typical cases corresponding to the conditions of Theorems 1 and 2. The constants
characterizing the thermal properties of the elements are taken from [4]; the value of R was set equal to 10−5 m.
The results corresponding to the conditions of Theorems 1 and 2 are given below. In particular, in the examples
(see below), the auxiliary problem was solved subject to the conditions c0 = 0.001 and θ0 = −0.025 m/sec1/2.

Example 1. The carrier phase is lead, and the dispersed phase is aluminum. The values of the parameters
ρdλd = 2,584,911 J/(K ·m3), ρmλm = 1,431,855 J/(K ·m3), kd = 62 J/(K ·m · sec), km = 19.77 J/(K ·m · sec),
L = 0.00000608m2/(K · sec) [4] correspond to the condition of Theorem 1. In Fig. 1, this solution corresponds to
the monotonic concentration profile which reaches the asymptote c = 0.0062028163 (curve 1). The temperature
difference was 27.442 K. In the case considered, c∗ ≤ 0.007 and condition (5.1) is satisfied.

The solution of the problem linearized in the low impurity concentration [formulas (1.8)] corresponds to
curve 2 in Fig. 1. Differences are observed only for very small arguments (of the order of 10−4). However, even in
the scale of Fig. 1, it is evident that the solution of the linearized problems reaches an asymptote that is slightly
below the asymptote of the solutions of the complete problem (c = 0.0061825704).

Example 2. The carrier phase is aluminum, and the dispersed phase is lead. The values of the parameters
ρdλd = 1,431,855 J/(K ·m3), ρmλm = 2,584,911 J/(K ·m3), kd = 19.77 J/(K ·m · sec), km = 62 J/(K ·m · sec), and
L = 0.00000568 m2/(K · sec) [4] correspond to the condition of Theorem 2.

In this case, the asymptotic value is c = 0.005116193 and the temperature difference is 38.206 K. From
the calculation results it follows that in the vicinity of zero, the concentration changes nonmonotonically (cmin =
0.0009999948). In this case, c∗ ≤ 0.006 and conditions (5.6) and (5.7) and constraint (3.4) are satisfied. As in
example 1, the solution of the problem linearized in the low impurity concentration is given, to which curve 3 in
Fig. 1 corresponds. The solution of the linearized problems is strictly monotonic and reaches an asymptote which
is slightly below the asymptote of the solutions of the complete problem (c = 0.0051252821), to which curve 4 in
Fig. 1 corresponds.

Example 3. Two emulsions under the same conditions (1.3). Since the concentration profiles in the complete
and linearized problems are practically indistinguishable in the scale of Fig. 1, we examine the initial-boundary-
value problem (1.3) for two emulsions for the same initial data (c∞ = 0.01, T∞ = 1173 K, and T0 = 1153) by
calculating the corresponding values of θ0 and c0 using formulas (1.9). For the lead–aluminum emulsion, c0 = 0.002
and θ0 = −0.01822 m/sec1/2, and for the aluminum–lead emulsion, c0 = 0.0029206 and θ0 = −0.013 m/sec1/2.
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Fig. 1. Concentration distribution in the linearized (1 and 3) and com-
plete (2 and 4) problems: curves 1 and 2 refer to the aluminum con-
centration in a lead–aluminum emulsion and curves 3 and 4 refer to
the lead concentration in an aluminum–lead emulsion.

1
2

c.103

x.102

10

5

0 321

Fig. 2. Concentration distribution in the linearized problems for the
same initial data: curve 1 refers to the aluminum concentration in a
lead–aluminum emulsion and curve 2 refers to the lead concentration
in an aluminum–lead emulsion.

Figure 2 shows curves of c(ξ) for the two emulsions (curve 1 is the concentration profile in the linearized
problem for the lead–aluminum emulsion, and curve 2 is the same for the aluminum–lead emulsion). In this scale,
the plots of the solution of the complete problems differ little from the corresponding plots of the solutions of the
linearized problems. Differences are observed for higher concentrations, for example, c = 0.05.
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